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This paper provides a review of the structure and metamorphism of the Menderes Massif in western Turkey,
and subsequently a map-view restoration of its Neogene unroofing history. Exhumation of this massif —
among the largest continental extensional provinces in the world — is generally considered to have occurred
along extensional detachments with a NE–SW stretching direction. Restoration of the early Miocene history,
however, shows that these extensional detachments can only explain part of the exhumation history of the
Menderes Massif, and that NE–SW stretching can only be held accountable for half, or less, of the
exhumation.
Restoration back to ∼15 Ma is relatively straightforward, and is mainly characterised by a previously
reported 25–30° vertical axis rotation difference between the northern Menderes Massif, and the Southern
Menderes Massif and overlying HP nappes, Lycian Nappes and Bey Dağları about a pivot point close to
Denizli. To the west of this pole, the rotation was accommodated by exhumation of the Central Menderes
core complex since middle Miocene times, and to the east probably by shortening.
At the end of the early Miocene, the Menderes Massif formed a rectangular, NE–SW trending tectonic
window of ∼150×100 km. Geochronology suggests unroofing between ∼25 and 15 Ma. The north-eastern
Menderes Massif was exhumed along the early Miocene Simav detachment, over a distance of ≤50 km. The
accommodation of the remainder of the exhumation is enigmatic, but penetrative NE–SW stretching
lineations throughout the Menderes Massif suggest a prominent role of NE–SW extension. This, however,
requires that the eastern margin of the Menderes Massif, bordering a region without significant extension, is
a transform fault with an offset of ∼150 km, cutting through the Lycian Nappes. For this, there is no evidence.
The Lycian Nappes — a non-metamorphic stack of sedimentary thrust slices and an overlying ophiolite and
ophiolitic mélange — have been previously shown to thrust to the SE between 23 and 15 Ma over at least
75 km. This is contemporaneous with, and orthogonal to stretching along the Simav detachment. I here argue
that the amount of SE-wards displacement of the Lycian Nappes was twice the minimum amount of 75 km,
which would restore them back on top of most of the Menderes Massif, apart from the ∼50 km unroofed
along the Simav detachment. A decollement was likely formed by a high-pressure, low-temperature
metamorphosed nappe immediately underlying the Lycian Nappes in the north — the Ören unit. Latest
Oligocene to early Miocene fission track ages of the Menderes Massif, as well as NE–SW trending lower
Miocene grabens on the Massif are in line with this hypothesis.
The main implications of this restoration are that 1) the eastern part of the Aegean back-arc accommodated
not more than 50 km of NE–SW extension in the early Miocene, and 2) any pre-Miocene exhumation of the
Menderes Massif cannot be attributed to the known extensional detachments. The restoration in this paper
suggests that most of the Menderes Massif already resided at upper crustal levels at the inception of
extensional detachment faulting, a situation reminiscent of the role of extensional detachments on the island
of Crete.

© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Much remains to be understood about continental extension and
exhumation of metamorphic rocks to the surface, particularly in
subduction zone settings. The eastern Mediterranean orogenic belt
between the Eurasian and African–Arabian plates (Fig. 1) has been
instrumental in the development and the testing of exhumation
scenarios of high-pressure, low temperature (HP–LT), as well as
high-temperature, low pressure (HT–LP) metamorphic rocks (Lister
et al., 1984; Buick and Holland, 1989; Thomson et al., 1999; Jolivet
et al., 2003, 2009, 2010a; Ring et al., 2007a, b, 2010; Brun and
Faccenna, 2008; Ring and Kumerics, 2008; Jolivet and Brun, 2010).
There is a general agreement that exhumation of metamorphic rocks
in subduction systems normally occurs in two stages, the first one
driven by buoyancy (or upward extrusion) of metamorphosed rocks
along the subduction zone (Chemenda et al., 1995; Jolivet et al.,
2003; Ring and Layer, 2003; Ring et al., 2010), followed by
‘classical’ core complex style exhumation during crustal extension
(Crittenden et al., 1980; Wernicke, 1981; Davis, 1983) to transport
the rocks from mid-crustal depth to the surface.

Critical to the analysis of the geodynamic and kinematic evolution
of crustal extension in the eastern Mediterranean is the Aegean–west
Anatolian extensional region, comprising the Greek Cycladic Massif,
and western Turkish Menderes Massif, which is among the best
studied continental extensional provinces in the world. It is the
purpose of this paper to provide the first map-view restoration of
western Turkey, and in particular of the portion of exhumation of the
Menderes Massif that can be ascribed to extensional detachments
since the late Oligocene.

The Menderes Massif is exposed in a tectonic window of approx-
imately 200×100 km exposing metamorphic rocks that were derived
from a micro-continental block (the Anatolide–Tauride Block) that
underwent Eocene underthrusting below, and collision with the
Sakarya continent of northwestern Turkey (belonging to Eurasia since
theMesozoic) (Şengör and Yılmaz, 1981; Kaymakci et al., 2009; Torsvik
and Cocks, 2009). It exposes, and is overlain by metamorphosed rocks
that provide evidence for periods of HP–LT, as well as HT–LP
metamorphism (Oberhänsli et al., 1997; Candan et al., 2001; Rimmelé
et al., 2003b;Whitney et al., 2008). Timing of themetamorphic events is
highly controversial, and will be reviewed below, but consensus exists
that during the Cenozoic, the Menderes Massif experienced at least
regional greenschist-facies metamorphism (Gessner et al., 2001c; Ring
et al., 2003; Bozkurt, 2007). Neogene exhumation of these rocks to the
surface has been attributed to the activity of extensional detachments,
with preservedNE–SW toN–S stretching lineations (Şengör et al., 1984;
Hetzel et al., 1995a, b; Bozkurt, 2000; Bozkurt andOberhänsli, 2001; Işık
and Tekeli, 2001; Ring et al., 2003; Seyitoğlu et al., 2004), in linewith the
general stretching trend of the greater Aegean extensional province

(Jolivet et al., 2004; Jolivet and Brun, 2010b; Tirel et al., 2009; Ring et al.,
2010). The Massif is surrounded by metamorphosed and non-
metamorphosed older, structurally higher thrust slices. These are (1)
the Bornova Flysch zone in theNW, a chaoticmélange of late Cretaceous
age that formed during accretion and subduction prior to underthrust-
ing of the Menderes Massif (Okay and Altıner, 2007); (2) the HP–LT
metamorphic Afyon zone, comprising coherent thrust slices with
metasediments and Pan-African basement, which reached blueschist
facies metamorphic conditions in latest Cretaceous to Paleocene times
(350 °C/6–9 kbar; Candan et al., 2005; Pourteau et al., 2010) and the
overlying, older and higher pressure Tavşanlı zone, which consists of
metasedimentary, andmélange-likeHP–LT series that includes intervals
metamorphosed under blueschist and eclogite-facies metamorphism,
with climaxP–T conditionsup to∼430 °C/20 kbar, exhumedafter 88 Ma
(Okay et al., 1998; Sherlock et al., 1999). The Tavşanlı zone is overlain by
ophiolites of the İzmir–Ankara suture zone that demarcate the suture of
a strand of the Neo-Tethyan ocean that separated the Sakarya and
Anatolide–Tauride blocks in the Mesozoic (Şengör and Yılmaz, 1981;
Moix et al., 2008). Metamorphic soles of the İzmir–Ankara zone are
∼95–90 Ma (Önen and Hall, 2000; Çelik et al., 2006) marking the
minimum age for the onset of subduction between the Anatolide–
Tauride and Sakarya blocks; (3) in the west, the Menderes Massif is
overthrusted by the HP–LT Dilek Nappe (500 °C/15 kbar; Ring et al.,
2007b) andoverlying Selçukophioliticmélange ,whichare correlated to
the Cycladic Blueschist unit and overlyingmélange of the Aegean region
(Candan et al., 1997; Oberhänsli et al., 1997, 1998; Ring et al., 1999b).
These give 40Ar/39Ar ages of 42–32 Ma (Ring et al., 2007b). The Dilek–
Selçuk nappe is overlain by klippen of the Ören HP–LT unit (see below)
(Rimmelé et al., 2006); (4) in the south, the top of theMenderes Massif
is formed by a metasedimentary sequence including upper Paleozoic to
lower Mesozoic rocks (Erdoğan and Güngör, 2004) with metamorphic
conditions of up to 550 °C/6–8 kbar (Whitney and Bozkurt, 2002),
termed the Selimiye unit (or nappe) by Gessner et al., 2001b; Régnier
et al., 2003). This unit is overlain by magnesiocarpholite-bearing,
Paleozoic to Eocene HP–LT (up to 470–500 °C/12–14 kbar, Rimmelé
et al., 2003b; Whitney et al., 2008) metasediments that are either
considered to belong to the Menderes Massif (e.g. Bozkurt, 2007), or
alternatively as a separate HP-nappe, correlated with the Dilek Nappe/
Cycladic blueschist unit (Régnier et al., 2007). This unit is separated by a
metamorphosed ophioliticmélange thatmaybe correlated to the Selçuk
mélange (Régnier et al., 2007), from anoverthrusting series ofMesozoic
to Eocene low-grade, magnesiocarpholite-bearing metasediments (up
to 400 °C/10–12 kbar, Rimmelé et al., 2005), classically included as a
metamorphosed part into the Lycian Nappes, but recently separately
identified as the Ören unit, correlated with the Afyon zone to the north
(Pourteau et al., 2010). Preliminary 40Ar/39Ar ages suggested a latest
Cretaceous age of metamorphism (Ring and Layer, 2003). Finally, the
Ören unit is overlain by the Lycian Nappes in the south and east
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(Bernoulli et al., 1974), characterised by NE–SW trending, SE verging
thrust slices of Paleozoic to Paleocene sedimentary rocks, ophiolitic
melange and ophiolites, correlatable with the Bornova Flysch zone and
Izmir–Ankara ophiolites north and west of the Menderes Massif (Okay,
1989; Collins and Robertson, 1997, 1998, 1999; Rimmelé et al., 2003a,
2005, 2006; Candan et al., 2005). To the southeast the Lycian Nappes
overthrust the Bey Dağları carbonate platform, which may be the
unmetamorphosed equivalent of the Menderes Massif (Hayward,
1984b; Collins and Robertson, 1998; vanHinsbergen et al, 2010b; Fig. 2).

There is a wealth of published information on the structure,
metamorphism, geochronology, stratigraphy and paleomagnetically
determined vertical axis rotations of this region. This paper reviews
the structure and metamorphism of the Menderes Massif and
overlying HP–LT nappes, and attempts to provide a restoration of
western Turkey back to ∼25 Ma, which is generally considered as the
time of the onset of extensional exhumation of the Menderes Massif
(Bozkurt and Oberhänsli, 2001; Gessner et al., 2001a; Ring et al.,
2003). The NE–SW trending stretching lineations (corrected for

Miocene vertical axis rotations, van Hinsbergen et al., 2010a) that
are found throughout the Menderes Massif, both on ductile-to-brittle
extensional detachments as well as within only ductily deformed rock
units support a generally accepted history of NE–SW extensional
unroofing of the Menderes Massif (Bozkurt and Park, 1994; Régnier
et al., 2003; Ring et al., 2003; Seyitoğlu et al., 2004). This paper,
however, will show that such a simple NE–SW unroofing history of
the Menderes Massif in early Miocene times is impossible to
reconstruct because essential large-displacement transform faults
that are required for such a scenario are absent. I will therefore
present an alternative (adjusted) unroofing model, with major
implications for the amount of exhumation that can be explained by
the known extensional structures.

Structural, geochonological, stratigraphic and paleomagnetic con-
straints on the Neogene evolution of western Turkey are reviewed,
followed by a reconstruction of the region back to ∼15 Ma, which is
relatively straightforward. This is followed by a new kinematic
scenario for the early Miocene.

Fig. 1.Major terranes in the Aegean and Anatolian regions, modified after Moix et al. (2008). Afyon/mln/dn = Afyon zone, metamorphosed Lycian Nappes and Dilek Nappe; CCC =
Cycladic Core Complex; NAFZ = North Anatolian Fault Zone; NAT = North Aegean Trough; PST = Pliny and Strabo Trenches (South Aegean left-lateral strike-slip system); RCC =
Rhodope core complex; SACC = South Aegean Crystalline Complex.
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Fig. 2. Geological map of western Turkey, with schematic cross sections, based on the geological map of Turkey (MTA, 2002), with nappe subdivision in the Menderes Massif
following Gessner et al. (2001b) and Régnier et al. (2007). The Dilek nappe in the southern Menderes Massif is based on the presence or absence of magnesiocarpholite and
metabauxite, taken from the compilation of Rimmelé et al. (2003b). Arrows indicate shear sense with arrowhead pointing the direction of the tectonic top. AD = Alaşehir
Detachment; BMD = Büyük Menderes Detachment; SD = Simav Detachment.
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2. Regional geodynamic setting

The eastern Mediterranean region has been an active margin since
at least Mesozoic times related to the closure of the Neo-Tethyan
ocean, and the convergence between Africa and Eurasia since the
Cretaceous (Dercourt et al., 2000; Stampfli and Borel, 2004; Barrier
and Vrielynck, 2008; Torsvik et al., 2008). The structural and
metamorphic history of the eastern Mediterranean region since at
middle Cretaceous times resulted from convergence between Africa
and Eurasia, and the accretion of rocks subducting continental or
oceanic lithosphere (Şengör and Yılmaz, 1981; Faccenna et al., 2003;
van Hinsbergen et al., 2005a; Hafkenscheid et al., 2006; Jolivet and
Brun, 2010). The geology of western Turkey reflects the convergence
since ∼95–90 Ma between the Anatolide–Tauride block of Gondwa-
nan origin (Kröner and Şengör, 1990; Hetzel and Reischmann, 1996;
Gessner et al., 2004) in the south, and the Sakarya block that belonged
to Mesozoic Eurasia (Topuz et al., 2007; Bozkurt et al., 2008; Okay
et al., 2008a, b; Torsvik and Cocks, 2009) in the north (Figs. 1 and 2),
and the accretion of thrust slices during subduction of the intervening
branch of the Neo-Tethyan Ocean and the Anatolide–Tauride passive
margin. The Anatolide–Tauride block collided with Sakarya in the
Eocene (∼40 Ma, Şengör and Yılmaz, 1981; Kaymakci et al., 2009)
after which the Africa–Europe convergence was accommodated to the
south, and western Turkey underwent exhumation and eventually
Miocene extension (Şengör et al., 1984).

The general consensus is that lithospheric extension in the Aegean
and west Anatolian region started approximately 25 Ma ago (Gautier
et al., 1999; Jolivet, 2001; Tirel et al., 2009; Ring and Glodny, 2010;
Ring et al., 2010), if not before, e.g. in the Rhodope (Burchfiel et al.,
2008; Jolivet and Brun, 2010; Georgiev et al., 2010), and that
extension relates to roll-back of the Aegean slab (Le Pichon et al.,
1982; Meulenkamp et al., 1988; Spakman et al., 1988). There has been
a long-standing debate on the role of westward extrusion of Anatolia
as a result of Arabian indentation further east as cause for N–S
extension in the region (Dewey and Şengör, 1979; Şengör et al., 1985),
but the recent recognition of a late Miocene age for this collision
(Keskin, 2003; Hüsing et al., 2009), an 11 Ma onset of formation of the
North Anatolian Fault Zone (Hubert-Ferrari et al., 2002; Şengör et al.,
2005), and the fact that the bulk of its displacement is Pliocene in age
(Hubert-Ferrari et al., 2009) shows that this process has made little
contribution to the early Miocene history of the Aegean and west
Anatolian regions.

In modern times, the Aegean subducting slab is delimited in the
southeast along a NE–SW trending subduction transform edge
propagator (STEP) fault that accommodates southwestward roll-
back of the Aegean slab with respect to the African lithosphere
(Govers andWortel, 2005). The surface expression of this STEP fault is
formed by the left-lateral Pliny and Strabo strike-slip faults in offshore
southeastern Greece (Peters and Huson, 1985; Mascle et al., 1999;
Woodside et al., 2000; Fig. 2), which started some 5 Ma ago
(Woodside et al., 2000; van Hinsbergen et al., 2007; Zachariasse
et al., 2008). Based on the sharp transition of extension in the
Menderes Massif to no Miocene extension to its east, van Hinsbergen
et al. (2010a) postulated that roll-back of the Aegean slab was already
bounded by this slab edge since the early Miocene, and that the
eastern limit of the Menderes Massif may have been bounded by a
STEP fault in this time.

3. Geological history of the Menderes Massif

3.1. Pre-Neogene structure and metamorphism of the Menderes Massif

The Menderes Massif is a series of crystalline rock units with a
complex Alpine, and partly Pan-African metamorphic, igneous and
structural history (Bozkurt et al., 1993; Bozkurt and Park, 1994, 1997;
Satır and Friedrichsen, 1986; Hetzel and Reischmann, 1996; Loos and

Reischmann, 1999; Bozkurt and Oberhänsli, 2001; Ring et al., 2003;
Gessner et al., 2001b, 2004). Schuiling (1962) classically subdivided
the Menderes Massif into a ‘core’ of augen gneisses, and a metasedi-
mentary ‘cover’. This simple subdivision has been shown to be incorrect
(e.g. Bozkurt et al., 1993; Gessner et al, 2001b). Among other lines of
evidence, the most compelling argument against the classical core-
cover interpretation was found by Gessner et al. (2001b), who showed
that the deepest structural level of the Menderes Massif, consists of
(rudist-bearing, Özer and Sözbilir, 2001) metasedimentary rocks —

termed the Bayındır Nappe — which have the lowest metamorphic
grade in theMenderesMassif (greenschist-facies, biotite grade, Gessner
et al., 2001b; Okay, 2001). These are overlain by higher-grade, and older
units, the foliation of which was intruded by Triassic and Pan-African
granitoids (Gessner et al., 2001c, 2004). The contact between the
Bayındır unit and the overlying units is hence by definition a thrust
postdating the late Cretaceous (based on the rudists). Three lithostrati-
graphic, regionally mappable units comprise the higher parts of the
Menderes Massif, which were also considered to be Alpine nappes by
Gessner et al (2001b): the metasedimentary Bozdağ unit, with
metamorphic conditions of unknown age reaching ∼530 °C/8 kbar
(Okay, 2001). The foliation of the Bozdağ unit is intruded by Triassic
granitoids (Gessner et al., 2001c). It is overlain by the Çine unit that
contains the augen gneisses recognised by Schuiling (1962), and finally
the Selimiye unit mentioned in the introduction.

The augen gneisses of the Çine unit have Pan-African (∼550 Ma)
protoliths (Hetzel and Reischmann, 1996; Loos and Reischmann, 1999)
and have intrusive relationships with metasedimentary rocks of the
Çine unit (Bozkurt et al., 1993). Both lithologies have a generally well-
developed foliation that is regionally consistent across most of the
Menderes massif, and is flat-lying, with a very consistent N(E)–S(W)
stretching lineation associated with top-to-the-north sense of shear
(Fig. 2) (Bozkurt and Oberhänsli, 2001). This foliation is in places
intruded by weakly deformed Pan-African granites (Gessner et al.,
2004). The Çine unit experienced regional HT–LP metamorphism (see
e.g. Akkök, 1983; Bozkurt and Park, 1999; Bozkurt and Oberhänsli,
2001). Locally, the augen gneisses contain mafic inclusions metamor-
phosed to eclogite (640 °C/15 kbar), overprinted under Barrovian
conditions (620 °C/7 kbar), associated with the regional HT–LP meta-
morphism of the Çine unit (Oberhänsli et al., 1997, in press; Candan
et al., 2001). Both the eclogites, aswell as themetasediments of the Çine
unit provide geochronological evidence for Pan-Africanmetamorphism,
e.g. through dating of monazite inclusions in garnet (Catlos and Çemen,
2005; Oberhänsli et al., in press). 40Ar/39Ar and Rb/Sr cooling ages,
which are exclusively Eocene or younger, date cooling below ∼350 °C
(Satır and Friedrichsen, 1986; Bozkurt and Satır, 2000; Lips et al., 2001),
and are unable to discern between Alpine greenschist or amphibolite-
facies metamorphism of the Çine and deeper units. No conclusive
evidence exists in support of Alpine amphibolite-facies metamorphism
in the Menderes Massif to date.

The Selimiye unit has a Permo-Triassic stratigraphy (Erdoğan and
Güngör, 2004) and its metamorphism — with conditions of up to
550 °C/6–8 kbar (Whitney and Bozkurt, 2002), or slightly lower
pressures (4 kbar, Régnier et al., 2003) — is associated with the
Alpine orogeny (Gessner et al., 2001b). The Çine–Selimiye contact
may have been an unconformity between Pan-African basement and
Tethyan sediments, but is at present a top-to-the-south shear zone
containing Eocene granitoid sills (Bozkurt, 2004), that may be
extensional (Bozkurt and Park, 1994), compressional (Ring et al.,
2003) or both (Bozkurt, 2007). Aside from the Pan-African eclogites,
the four units of the Menderes Massif are devoid of evidence for
high-pressure metamorphism. Overlying the Selimiye unit, howev-
er, is a metasedimentary sequence with a Paleozoic to Eocene
stratigraphy (Konak et al., 1987; Özer, 1998; Özer et al., 2001),
which is classically incorporated in the ‘Menderes cover sequence’
(Oberhänsli et al., 1998; Bozkurt and Oberhänsli, 2001; Rimmelé et al.,
2003a, b;Whitney et al., 2008). This sequence has magnesiocarpholite-
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bearing assemblages and contains metabauxite with a metamorphic
field gradient from corund in the north to diasporite in the south
(Schuiling, 1962; Konak et al., 1987; Yalçin et al., 1993; Hatipoğlu
et al., 2010). Given its stratigraphic age, its metamorphism must
be Alpine, and reached HP–LT conditions (up to 470–500 °C/12–
14 kbar, Rimmelé et al., 2003b; Whitney et al., 2008). This unit is
separated by a metamorphosed ophiolitic mélange that may be
correlated to the Selçuk mélange of the overlying the Dilek nappe
in the west (Ring et al., 2007a, b; Régnier et al., 2007), from
another magnesiocarpholite-bearing metasedimentary unit (up to
400 °C/10–12 kbar, Rimmelé et al., 2005). The latter is classically
included as a metamorphosed part into the Lycian Nappes, but
recently separately identified as the Ören unit, correlated with the
Afyon zone to the north (Pourteau et al., 2010). Foliations in the
Selimiye, ‘Dilek’, and Ören units are more or less parallel, and dip
to the south, below the Lycian Nappes.

The contrasting metamorphic grades in the metasedimentary units
overlying the Çine unit led to two hypotheses: (1) TheMenderesMassif
underlying the carpholite-bearing ‘cover sequence’ has experienced
AlpineHPmetamorphism,whichwas entirely overprinted by a regional
HT–LP overprint (e.g. Bozkurt, 2007; Whitney et al., 2008). This
hypothesis hence predicts that the Çine unit not only underwent Pan-
African, but also Alpine amphibolite-facies metamorphism; (2) Alter-
natively, the contrast in peak pressure between the Selimiye unit and
overlying carpholite-bearing successions led Gessner et al. (2001b) and
Régnier et al. (2007) to postulate that the carpholite-bearing rocks
should be correlated with the Dilek nappe of western Turkey.

In favour of the first hypothesis is the parallelism between the syn-
HT–LP stretching lineations and the Miocene stretching lineations
associatedwith Neogene detachment faults (see below). In addition, an
Eocene high-temperature pulse was also concluded from the intrusion
of a largenumber of granitoids in andvolcanismon thenappes overlying
the Menderes Massif in the north between ∼50 and 35Ma (Aldanmaz
et al., 2000; Delaloyle and Erguzer, 2000; Dilek and Altunkaynak, 2009).

This hypothesis, however, is troubled by absence of conclusive evidence
for Alpine HT metamorphism in the Çine unit, and the presence of the
weakly deformed pan-African and Triassic granites intruding the Çine
and Bozdağ units' foliations (Gessner et al., 2001c, 2004).

In favour of the second hypothesis is the similar metamorphic
grade of the Dilek nappe (500 °C/15 kbar; Ring et al., 2007b) and
the carpholite-bearing successions south of the Menderes Massif
(470–500 °C/12–14 kbar; Rimmelé et al., 2003a, b; Whitney et al.,
2008), the presence of metabauxites in both (Schuiling, 1962; Konak
et al., 1987; Yalçin et al., 1993; Ring et al., 2007b; Hatipoğlu et al.,
2010), the presence of metamorphosed ophiolitic mélange overlying
both, and the absence of evidence for HP metamorphism in the
remainder of the Menderes Massif. In addition, it is in line with the
intrusive relationship between weakly deformed Pan-African and
Triassic granites and the Çine and Bozdağ unit's foliations (Gessner
et al., 2001c, 2004). However, it includes the peculiar coincidence of
parallel Pan-African and Alpine stretching lineations and foliations,
and is difficult to reconcile with absence of evidence for intense
deformation of the Çine and Bozdağ unit's foliations, despite Alpine
thrusting and greenschist-facies metamorphism.

Both hypothesis, however, have to face the fact that rudist-bearing,
low-grade rocks are at the lowermost structural level of the Menderes
Massif (Gessner et al., 2001b), which inevitably indicates that the
highest three units of the Menderes Massif were thrusted upon the
Bayındır nappe in Alpine times, regardless of the grade of their Alpine
metamorphism and deformation. The contacts between the Bozağ,
Çine and Selimiye units may or may not be thrusts, and may or may
not be Alpine.

In the map of Fig. 2, I have indicated the presumed Dilek nappe
south of the Menderes Massif, based on the presence or absence of
carpholite findings (mainly based on Rimmelé et al., 2003a, b), as well
as the four units of the Menderes Massif identified by Gessner et al.
(2001b). It is up to the reader to decide which hypothesis is most
likely. For the remainder of this paper, which focuses on the Neogene

Fig. 3. Topography of western Turkey, with some reference features for comparison with the geological map of Fig. 2. AD = Alaşehir detachment; BD = Bey Dağları; BMD= Büyük
Menderes Detachment; CMM = Central Menderes Massif; EG = Eğrigöz granite; NMM = Northern Menderes Massif; KMB = Küçük Menderes Basin; LN = Lycian Nappes; SF =
Simav high-angle normal fault; SMM = Southern Menderes Massif.
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history of western Turkey, the controversies outlined above are not
relevant, and at this stage, I have no preferred interpretation.

3.2. Neogene extensional detachments and exhumation

Neogene extension divided the Menderes massif into three sub-
Massifs, the Northern (or Gördes), Central, and Southern (or Çine)
Menderes Massif (N-, C- and SMM), respectively (Figs. 2 and 3). The
NMM and SMM record late Oligocene to latest Early Miocene zircon
and apatite fission track ages (∼27–16 Ma, with zircon fission track
ages generally 2–3 Ma older than the apatite fission track ages), and
the CMM exhumed mainly between ∼16 and 5 Ma (Gessner et al.,
2001a; Ring et al., 2003; Thomson and Ring, 2006).

The exhumation history of the CMM is well-constrained along
multiple lines of evidence. Two ductile-to-brittle extensional detach-
ments were identified along the northern (Alaşehir detachment) and
southern (Büyük Menderes detachment) margins of the CMM (Figs. 2
and 3). In the hanging walls of both detachments, supra-detachment
basin sediments with early middle Miocene ages (16.6–14.6 Ma along
the Alaşehir detachment and 16.0–14.9 Ma along the BüyükMenderes
detachment (Sen and Seyitoğlu, 2009)) are dipping into the
detachment surface (Işık et al., 2003). In the footwall of the Alaşehir
detachment, granite intrusions with crystallisation ages of 16–13 Ma
(Catlos and Çemen, 2005; Glodny and Hetzel, 2007; Catlos et al., 2010)
are deformed by the detachment, and were interpreted to be syn-
kinematic (Hetzel et al., 1995b; Gessner et al., 2001b). Andalusite in
the contact metamorphic aureoles around those granites was used to
interpret an intrusion depth not exceeding 12 km (Ring et al., 2003).
This is in line with the 40Ar/39Ar white mica age of 36±2 Ma from
rocks below the Büyük Menderes detachment, showing that the
metamorphic rocks of the southern CMM were already cooled below
the closure temperature for argon diffusion in white mica when
middle Miocene detachment faulting started (Lips et al., 2001). The
comparable ages between the granite and the supra-detachment
basin sediments on either side of the Alaşehir detachment shows
extensional exhumation from ∼12 km depth since ∼16 Ma.

The central axis of the CMM exhibits the Küçük Menderes Graben,
containing volcanic deposits with ages of 14.6–13.9 Ma (Bozkurt et al.,
2009). Together with early Miocene fission track ages in the central
axis of the CMM, which young to Pliocene and younger ages to the
north and south (Ring et al., 2003), this shows that the post-16 Ma
extension only exhumed the flanks of the CMM.

Finally, the CMM pinches out eastward, and the Alaşehir and
Büyük Menderes detachments converge to a point around Denizli
(Fig. 2), defining an angle of ∼30°. A comparable angle is found
between the stretching lineations of the Alaşehir and Büyük
Menderes detachments (Hetzel et al., 1995a; Bozkurt and Satır,
2000; Lips et al., 2001; Okay, 2001; Ring et al., 2003; Fig. 2).
Paleomagnetic results from lower Miocene volcanics on the NMM,
and upper Oligocene to uppermost lower Miocene sediments in the
Lycian Nappes and on Bey Dağları demonstrate a rotation difference
of ∼25–30° since ∼16 Ma, and have been used to argue for a syn-
exhumational vertical axis rotation episode between the SMM and
NMM during exhumation of the CMM around a pole north of Denizli
(van Hinsbergen et al., 2010a, b; Fig. 2). It should be noted that the
southern rotating domain runs further east than the pole near
Denizli, and is likely delimited in the east along the middle to upper
Miocene Aksu thrust and Kırkkavak right-lateral strike slip fault (van
Hinsbergen et al., 2010a, b a, b; Fig. 2). Rotation east of the pole near
Denizli is likely associated with contraction within the Lycian Nappes
(such as for instance documented by post-early Miocene thrusting in
the Denizli basin (Sözbilir, 2005).

This lateral variation in total amount of middle Miocene and
younger extension in the CMM is a common phenomenon in most
other extensional complexes that exhumed crystalline rocks in the
Aegean region, including the Southern Rhodope core complex (Dinter

and Royden, 1993; Sokoutis et al., 1993; Brun and Sokoutis, 2007;
Georgiev et al., 2010), the culmination of Cycladic core complexes
(Tirel et al., 2009; Jolivet et al., 2010a, b; Jolivet et al., 2010a), and the
South Aegean crystalline complex of Crete and the Peloponnesos (van
Hinsbergen et al., 2005c; Jolivet et al., 2010a, b). These all have
lenticular shapes (Fig. 1), which have been associated with vertical
axis rotation of the west-Aegean region in the course of the Neogene
(van Hinsbergen et al., 2005b; 2008; Brun and Sokoutis, 2007;
Georgiev et al., 2010).

The early Miocene configuration of the Menderes Massif, however,
is markedly different. In contrast to the extensional systems
mentioned above, the Menderes massif at the onset of the CMM
exhumation and rotation episode, some 16 Ma ago, was deliniated
along sharp boundaries on all sides, defining a NE–SW trending
rectangle.

A large set of apatite fission track ages from the NMM and SMM
show a range in ages from late Oligocene (∼27 Ma) to early Miocene
(∼16 Ma; Ring et al., 2003; Thomson and Ring, 2006), indicating
cooling below ∼120–60 °C in this period of time. Along the northern
margin of the NMM, the ductile-to-brittle Simav extensional detach-
ment was identified by Işık and Tekeli (2001), which can be
traced from the northern contact of the NMM with the overlying
rocks of the Afyon zone and İzmir–Ankara ophiolites to the massifs
southwest and southeast of Simav, over a distance of some 50 km
parallel to the consistent NE–SW stretching lineations (Verge, 1993;
Işık and Tekeli, 2001; Ring et al., 2003; Fig. 2). Thomson and
Ring (2006) concluded that the detachment was active from ∼25 to
19–18 Ma, and syn-kinematically with detachment activity, the large
Eğrigöz granite intruded, which has crystallisation and 40Ar/39Ar
cooling ages of 23–20 Ma (Işık et al., 2004; Ring and Collins, 2005;
Figs. 2 and 3). The Eğrigöz granite is unconformably overlain by
volcanics of ∼15 Ma (Ercan et al., 1997; Işık et al., 2004). If all
exhumation of the footwall can be attributed to the Simav
detachment, and erosion played no role, then the modern 50 km
width of the exposed Simav detachment corresponds to its displace-
ment. If there was significant erosion after activity (as suggested by
Thomson and Ring, 2006 and Hasözbek et al., 2010), then 50 km
should be considered a maximum value. In the reconstructions in this
paper I will use the maximum value of 50 km of NE–SW extension
along the Simav detachment. To the northwest of the Menderes
Massif, contemporaneous extensional exhumation was identified in
the Kazdağ Massif (Bonev et al., 2009; Cavazza et al., 2009; Fig. 2),
which will be accounted for in the restoration in this paper.

Apatite fission track ages of the SMM show that it cooled in the
same period as the NMM, starting perhaps slightly earlier, but locating
extensional structures thatmay account for its exhumation has proven
to be problematic (Ring et al., 2003). As noted above, northern SMM
exposes predominantly augen gneisses of the Çine unit with Pan-
African granitic protoliths, separated from the Selimiye unit by a top-
to-the-south ductile shear zone (the South Menderes shear zone,
Bozkurt (2007); Fig. 2), which has been interpreted as an extensional
shear zone (Bozkurt and Park, 1994; 1997) or as a thrust (Ring et al.,
2003), or both (Bozkurt, 2007). Either way, this shear zone has no
brittle component and can therefore not be held accountable for the
cooling of the SMM recorded by the fission track ages of (Ring et al.,
2003). The base of the Ören unit has also been proposed to be a
candidate to have exhumed the SMM (Collins and Robertson, 1998,
2003; Güngör and Erdoğan, 2001; Régnier et al., 2003; Ring et al.,
2003). A particular problem with this contact is that shearing in the
metamorphosed Lycian nappes is associated with top-to-the-NE to E
kinematics (Collins and Robertson, 2003; Rimmelé et al., 2003a).
Therefore, Bozkurt and Park (1999) and Rimmelé et al. (2003a)
interpreted these kinematics as indication of north-eastward back-
thrusting after southward emplacement of the Lycian Nappes over the
Menderes Massif. On the other hand, Régnier et al. (2003) interpreted
these E-ward stretching lineations as rotated top-to-the-south
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kinematic indicators. These contradicting interpretations illustrate the
notion of Ring et al. (2003) that unequivocal evidence for extensional
deformation at the southern margin of the SMM is lacking.

The NMM and SMM are overlain by a series of grabens that trend
parallel to the stretching lineations in their underlying basement
(Bozkurt, 2003; Purvis and Robertson, 2004; Figs. 2 and 3). Especially
the basins overlying the NMM are well-described, and contain
volcano-sedimentary records with ages of ∼21 Ma and younger
(Bingöl, 1977; Ercan et al., 1996; Seyitoğlu, 1997; Purvis and
Robertson, 2005; Ersoy et al., 2008) that rework leucogranite pebbles
with crystallisation ages of 24–21 Ma (Seyitoğlu and Scott, 1992), in
line with sedimentation during exhumation along the Simav detach-
ment to the north and erosion of the footwall. The NW–SE extension
direction of these basins has puzzled workers for a long time, and
Bozkurt (2003) suggested that they form cross-grabens that formed in
the hanging wall of the Alaşehir detachment. Although this scenario
may valid since ∼16 Ma, i.e. the onset of activity of the Alaşehir
detachment, this cannot explain the first ∼5 Ma if their evolution.

In summary, three unequivocal extensional detachments have
been identified in the Menderes Massif, which have exhumed the
entire CMM, and maximum 50 km of the NMM (Ring et al., 2003),
with NE–SW stretching directions that rotated into a N–S direction in
the south after 16 Ma (van Hinsbergen et al., 2010a). The exhumation
of the remaining southern part of the NMM, and of the entire SMM to
the surface in the early Miocene remains open for discussion.
The timing of this exhumation, however, is well-constrained and
occurred between ∼27 and 16 Ma, and since ∼21 Ma, sedimentary
basins formed on the NMM (and SMM), apparently in part as a result
of NW–SE extension (i.e. orthogonal to the general stretching
direction preserved in the underlying metamorphic rocks).

4. The Lycian Nappes and the Ören unit

The Lycian Nappes comprise a stack of sedimentary thrust slices,
below an ophiolitic mélange and ophiolite unit, which were accreted
and thrusted during consumption of the northern margin of the
Anatolide–Tauride platform in the İzmir–Ankara subduction zone,
between∼90 Ma (the age of themetamorphic soles below the ophiolite
(Celik et al., 2006)) and the Eocene (de Graciansky, 1972; Dürr et al.,
1978; Gutnic et al., 1979; Okay, 1989; Collins and Robertson, 1997,
1998, 1999). These thrust slices have a consistent NE–SW strike, and
Cretaceous to Eocene thrusting occurred in a SE direction (Okay, 1989;
Collins and Robertson, 1997, 1998, 1999). The non-metamorphic and
ultramafic Lycian Nappes overlie the above mentioned Ören unit.

In places, klippen of the Ören unit have been identified on top of
the Menderes Massif (Rimmelé et al., 2006). These preserve
magnesiocarpholite-bearing, HP–LT metamorphic mineral paragen-
eses, without evidence for a HT overprint, similar to the rest of the
Ören and Afyon units(Rimmelé et al., 2005), and in places also contain
SE-directed lineations, although such isolated blocks may not have
preserved their original position (Rimmelé et al., 2006; Fig. 2).

In the central Aegean region and as far east as Samos (Fig. 2), the
Cycladic Blueschist unit is thrust upon the Lowermost Unit, generally
considered to correlate to the Tripolitza unit of mainland Greece and
Crete (Ring et al., 1999a, 2001b), which underthrusted the Aegean
nappe pile in the Oligocene (Ring et al., 2001b; van Hinsbergen et al.,
2005c), i.e. well after the collision and underthrusting of theMenderes
Massif. The structural evolution and architecture of the transition of
theMenderesMassif to the Aegean region remains poorly understood,
and may include significant influence of strike-slip tectonics accom-
modating a westward increasing amount of extension (Ring et al.,
1999a; vanHinsbergen et al., 2010a, Erkül, 2010; Kondopoulou et al., in
revision). In the early Miocene, the Eocene and older Lycian nappe
stack moved SE-wards, overthrusting the Bey Dağları parauthochto-
nous carbonate platform, as indicated by an Aquitanian to lowermost
Langhian (∼23–16 Ma) foreland basin succession below the Lycian

thrustfront (Hayward and Robertson, 1982; Hayward, 1984b; van
Hinsbergen et al., 2010b). This episode of thrusting ended in the
lowermost Langhian, as evidenced by the presence of proximal, Lycian
Nappes-sourced fan delta conglomerates in the top of the stratigraphy
(Poisson, 1977; Gutnic et al., 1979;Hayward et al., 1996; Karabıyıkoğlu
et al., 2005) and Serravallian sediments covering the thrust (Flecker et
al., 1995; Poisson et al., 2003).

In a window near Göçek (Fig. 2), Brunn et al. (1970) and Hayward
(1984a) found Burdigalian marls and turbidites, comparable in age
and facies to the foreland basin deposits of Bey Dağları, and these
authors therefore concluded a minimum of ∼75 km SE-ward thrust
displacement of the Lycian Nappes in early Miocene times.

The Lycian nappes are overlain by post-accretionary extensional
sedimentary basins with late Oligocene and younger ages. The oldest
sedimentary basins are found along the contact of the Ören unit and
the Lycian nappes, and constitute the upper Oligocene–lowerMiocene
Kale–Tavaş, Denizli and Çardak–Dazkırı basins (Akgün and Sözbilir,
2001; Seyitoğlu et al., 2004; Sözbilir, 2005; Alçiçek et al., 2007).
These basins form a NE–SW trending belt, and are limited in the SE by
NW-verging normal faults. The contact of the basin fill with the
underlying metamorphosed Lycian Nappes has not been described so
far, and is covered by younger sediments (Fig. 2). Within the Lycian
Nappes, early Miocene sedimentary basins (e.g. near Acıpayam, Fig. 2)
formed as a result of NW–SE extension, comparable in direction with
the Oligocene basin belt, and were interpreted as piggy-back basins
that formed during SE-ward emplacement of the Lycian Nappes over
the Bey Dağları platform in the early Miocene (Alçiçek and ten Veen,
2008; Alçiçek, 2010).

Paleomagnetic data showed that Bey Dağları underwent a
counterclockwise rotation of ∼25° (with respect to the Eurasian
reference frame of Torsvik et al. (2008)) between 16 and ∼5 Ma
(Kissel and Poisson, 1986, 1987; Morris and Robertson, 1993; Tatar
et al., 2002; van Hinsbergen et al., 2010b). Importantly, there is no
evidence that this region experienced any significant rotations
between late Cretaceous and middle Miocene times (van Hinsbergen
et al., 2010b). From the upper Oligocene of the Kale basin, van
Hinsbergen et al. (2010a) obtained a similar rotation amount, which
suggests that the Lycian Nappes shared the Bey Dağları rotation
history, and that early Miocene SE-ward emplacement did not involve
significant (i.e. N∼5°) vertical axis rotations.

In summary, the Lycian Nappes display evidence for SE-ward
displacement over a distance of at least 75 km between ∼23 and
16 Ma ago, i.e. contemporaneous with activity of the Simav detach-
ment, and the cooling of the NMM and SMM.

5. Analysis: a restoration

Fig. 4 shows a series of snapshots of the reconstruction in 5 Ma
intervals from the Present back to 25 Ma. For these reconstructions
GPlates software (Boyden et al., in press), freely available at http://www.
gplates.org/ was used.GPlates subdivides the surface into undeformable
polygons and deformable topologies. For instance extending basins, core
complexes, or folding nappes can be represented by topologies during
their deformation. Moreover, GPlates interpolates plate motions with
constant rates between known situations, leading to continuous
deforming-plate reconstructions, allowing testing whether configura-
tions can evolve from one to another with reasonable rates and
processes. Polygons and topologies are defined strictly on geological
criteria, and their definition, shape files and rotation files used to create
Fig. 4a are given in theOnlineAppendix. The reconstructions in Fig. 4 are
shown in a Eurasia-fixed reference frame.

5.1. Reconstruction back to ∼15 Ma

During the last 5 Ma, western Turkey was affected by brittle
faulting, and formation of several basins (see e.g. Seyitoğlu et al.,
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1992; Bozkurt, 2000, 2001; Sözbilir, 2001; Alçiçek et al., 2005,
2006; Alçiçek, 2007; Çiftçi and Bozkurt, 2009; ten Veen et al., 2009;
Alçiçek, 2010). However, the displacement amounts associated

with these faults are relatively minor, and have little influence on
the scale of this reconstruction. The reconstruction at 5 Ma ago thus
shows a similar geometry of the main units as today, corrected for

Fig. 4. Restoration of western Turkey since 25 Ma, in 5 Ma time slices. Basic geological map with main units based on Okay et al. (1996). Sea of Marmara is closed based on
interpretations of Armijo et al. (1999). Western part of the Biga peninsula is included in the Rhodope block, following Beccaletto and Jenny (2004). Evolution of the Cycladic core
complex (Ccc) is tentative, and will be subject of future restorations. A post-20 Ma opening of the eastern part of the Ccc is in line with geochronological data of Kumerics et al.
(2005). Rotation of Rhodos is according to van Hinsbergen et al. (2007). Positions and affinity to onshore equivalents of the Anaximander and Anaxigoras mountains is based on
Zitter et al. (2003) and ten Veen et al. (2004). Areas indicated with x-symbols at 10 and 15 Ma in the Lycian Nappes area indicated the area that is inferred to be consumed by
convergence upon rotation of the SW-Anatolian domain (see van Hinsbergen et al., 2010a, b). The connection of the Hellenic subduction zone to the Cyprus subduction zone is
enigmatic and will be subject of future reconstructions. For now, the reader is referred to ten Veen et al. (2004).
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the motion along the North Anatolian Fault. For this motion, I
adopted a total displacement of 85 km since 11 Ma following
Şengör et al. (2005), of which 50 km was accommodated in the last
3 Ma, following Hubert-Ferrari et al. (2009). The rates are
intrapolated between these ages. Paleomagnetic data of van
Hinsbergen et al. (2010a) in the region north of the CMM show
no evidence for post-early Miocene vertical axis rotation with
respect to Eurasia, and I therefore do not adopt the conclusion of
Kissel et al. (2003) for a Turkey-wide counterclockwise rotation

history of ∼20° since the late Miocene. The reconstructed 85 km of
motion along the curved North Anatolian Fault Zone would lead to a
counterclockwise rotation of ∼2°, well within the typical error
margins of paleomagnetism.

The reconstruction of Fig. 4d shows the west-Anatolian situation
prior to the counterclockwise rotation of the SMM, Lycian Nappes and
Bey Dağları. I assumed a constant rotation rate between 15 and 5 Ma,
and the 10 Ma reconstruction of Fig. 4c is an intrapolation of the
situations at 15 and 5 Ma.

Fig. 4 (continued).
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The vertical axis rotation is, as outlined above, accommodated by
the exhumation of the CMM, which consequently is closed at 15 Ma.
The position of the central axis of the CMM and the Küçük Menderes
basin between the CMM and NMM is outlined in Fig. 4c. Post-12 Ma
N–S extensional exhumation on the island of Kos (van Hinsbergen and
Boekhout, 2009) was not specifically corrected for due to its local
nature.

East of the rotation pole near Denizli, the vertical axis rotation
episode must have been accommodated by compressional deforma-
tion of the Lycian nappes. Two triangles in Fig. 4d indicate the total
area that must have been consumed during this rotation. The eastern
one was likely consumed by dextral transpression partitioned along
the Aksu thrust and the Kırkkavak fault, which have been shown to be
active in middle to late Miocene times (Poisson et al., 2003; Çiner
et al., 2008). Because the exact boundary of the rotating domain in the
north is not known, and few data are available on the structural
evolution of the northeastern Lycian nappes in the Neogene, I have
not specified the exact locations of accommodation of compression
here, and let the Lycian Nappes topology deform as a whole. Post-
Oligocene thrusting in the Denizli basin (Sözbilir, 2005), and
significant clockwise rotations in the volcanic fields of Afyon along
the northeastern margins of the Lycian nappes (Gürsoy et al., 2003),
are in line with the prediction of (compressional) middle–late
Miocene deformation in this region.

The reconstruction at 15 Ma outlines the configuration of the
Lycian Nappes and the Menderes Massif at the end of the early
Miocene. Back-rotation of the southern domains aligns the stretching
lineations throughout the Menderes massif into a NE–SW orientation.

5.2. Identification of the early Miocene exhumation problem

The reconstructed situation at 15 Ma quickly defines the problems
that arise from the — at first sight logical — interpretation that the
early Miocene exhumation history of the Menderes Massif was only
associated with NE–SW extension as suggested by the invariably NE–
SW stretching lineations found throughout the Menderes Massif (e.g.
Seyitoğlu et al., 2004).

Firstly, the width of the Menderes Massif around 15 Ma parallel to
this dominant NE–SW stretching direction is 150 km. Around 25 Ma,
most of the NMM and SMMwere buried to at least several kilometers
of depth as suggested by apatite and zircon fission track data (Ring
et al., 2003; Thomson and Ring, 2006). It is unlikely that all
exhumation can be contributed to erosion, mainly because it seems
unlikely that the Menderes massif experienced many kilometers of
erosion, whereas the surrounding (higher) mountain belts still
preserve the highest structural units, formed by the ophiolites of
the İzmir–Ankara zone. It is therefore likely that most exhumation is
related to tectonic unroofing. The eastern boundary of the Menderes
Massif is very abrupt, and borders with a regionwith no, or only a very
minor record of extension. This boundary should therefore accom-
modate a total of 150 km of early Miocene NE–SW extension
exhuming the Menderes Massif to the northwest from a region
without extension to the southeast. In other words, this boundary
should be a transform fault, offsetting the southwestern Lycian
nappes over a distance of 150 km. Such a fault should crosscut the
Lycian Nappes and separate the southwestern, offset Lycian Nappes
from the eastern part. In modern coordinates, this strike-slip fault
should be oriented approximately N–S, running from Denizli to
Fethiye (Fig. 2). Such a fault would be hard to miss, and is evidently
absent, especially illustrated by the continuous ophiolite belt that runs
NE–SW over the Lycian Nappes. Even if only the proven displacement
of the Simav detachment of maximum 50 km (Ring et al., 2003) is
taken, this would still require a major strike-slip fault.

Secondly, the Lycian Nappes, and its thrustfront over Bey Dağları,
run almost parallel to the early Miocene stretching direction in the
Menderes Massif. There is no evidence for 150 km of extension in the

northeastern part of the Lycian Nappes in early Miocene time, and it is
therefore unlikely that the Lycian Nappes were coupled with the
Menderes Massif during the early Miocene.

Thirdly, if I ignore the lack of evidence for a transform fault
crosscutting the Lycian Nappes to accommodate the Menderes Massif
stretching, and the Menderes Massif is restored to its pre-early
Miocene history, I inevitably have to restore the island of Rhodos
along with the Menderes Massif to the northeast. This would bring it
into a position north of the Lycian Nappes. This is precluded by the fact
that Rhodos was the location of an Oligocene foreland basin (Mutti
et al., 1970), correlated across southern and western Greece linked to
the northward subducting Hellenic slab. This would then have to by-
pass the Lycian Nappes, an impossibility.

Fourthly, closure of the Menderes Massif in a SW–NE direction
would not bring the Lycian Nappes in contact with its equivalents
along the NE and NW side of the Menderes Massif.

In other words, it is not possible to un-exhume the Menderes
Massif with only NE–SW extension. This problem was recently also
realised by ten Veen et al. (2009) who already suggested that N–S
extension in the Menderes Massif was contemporaneous with
southeastward translation of the Lycian Nappes.

5.3. A working hypothesis for the early Miocene unroofing history of the
Menderes Massif

The foreland basin deposits on Bey Dağları of 23–16 Ma clearly
show that the SE-ward motion of the Lycian nappes occurred
contemporaneously with at least part of the activity of the Simav
detachment (active between ∼25 and 19 Ma according to Thomson
and Ring, 2006). Adopting the constraint of at least 75 km of SE-ward
movement of the Lycian Nappes provided by the Göçek window
already places the Lycian Nappes on top of the Menderes Massif,
covering half of the area exposed at 15 Ma. The similarity in shape of
the NW and SE margin of the Menderes Massif at 15 Ma requires little
imagination to suggest that the amount of displacement of the Lycian
Nappes was approximately twice the distance from Göçek to the
modern thrustfront. This would restore the Lycian Nappes back
against the Karaburun peninsula and the Bornova Flysch zone in the
NW, and link the carpholite bearing ‘cover sequence’, the overlying
ophiolitic mélange and the Ören unit with their equivalents formed by
the Dilek Nappe and Selçuk Mélange and the overlying Ören klippen
in western Turkey. Moreover, it connects the Ören unit with the Afyon
zone in the NE (Figs. 4 and 5).

In other words, during the NE–SW extension of max. 50 km along
the Simav detachment, the Lycian Nappes slide southeastward,
exhuming the remainder of the Massif in the early Miocene. This,
however requires a decollement between the Lycian Nappes and the
Menderes Massif, for the latter provides no evidence for SE-ward
sliding (Fig. 2).

5.4. Kinematic requirements and predictions

The above scenario integrates the available temporal and kine-
matic evidence into a restorable tectonic history of the early Miocene
unroofing of the Menderes Massif. However, this reconstruction also
predicts deformation in regions where little kinematic information, or
time-constraints on deformation are present.

The first major requirement for this reconstruction to be valid is
that there was a decollement between the Menderes Massif and the
Lycian Nappes that accommodated the SE-ward displacement of the
latter. There is only one candidate for this decollement, as was already
proposed by Collins and Robertson (2003), which is the contact of the
Lycian Nappes with the Ören unit. The thickness of the Lycian Nappes
was probably not much more than the modern maximum elevations
of ∼2000 m: the window of Göçek shows that in a segment near the
coast the base of the Lycian nappes is still at sea level. Placing them
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back to the northwest would thus bury the Menderes Massif would to
a depth of approximately 2 km or, depending on the amount of
thinning in Ören unit related to the SEward sliding, and the amount of
post-Oligocene erosion of the ophiolite sequence of the Lycian
Nappes, more. This appears to be in line with the conclusion of
Thomson and Ring (2006) that most of the northern Menderes Massif
south of the Eğrigöz granite underwent 2–3 km of exhumation in
early Miocene times based on zircon and apatite fission track ages.
They ascribed this exhumation to erosion, I here suggest that it mainly
corresponds to the SE-ward tectonic transportation of the Lycian
Nappes. A limited amount of exhumation in early Miocene time of the
bulk of the Menderes Massif, apart from the ∼50 km wide region
exhumed along the Simav detachment, as well as the younger CMM,
may also explain the lack of a ductile Miocene overprint, and the
preservation of Eocene and/or Pan-African NE–SW stretching linea-
tions across the massif. In fact, most of the Menderes Massif would
already have resided at upper crustal levels at the beginning of the
Neogene. The brittle early Miocene history of the Menderes is entirely
in line with NW–SE extension: the cross-grabens on the NMM and
SMM with early Miocene basin fills recorded such extension
directions.

The restoration proposed here predicts that the modern Bey
Dağları platform was separated by approximately 150 km from the
pre-Miocene thrustfront of the Lycian Nappes. This is in line with
absence of significant deformation and ongoing carbonate deposition
on the Bey Dağları platform throughout the late Cretaceous to
Oligocene (Poisson, 1967, 1977; Farinacci and Köylüoğlu, 1982;
Hayward and Robertson, 1982; Sarı and Özer, 2002; Sarı et al., 2004,
2009).

The Lycian Nappes continue further to the NE than the Bey Dağları
platform, and because the early Miocene unroofing did probably not
involve vertical axis rotation of the Lycian Nappes (van Hinsbergen
et al., 2010a), an equal amount of early Miocene NW–SE shortening
should have been accommodated in the Isparta Angle. Evidence for
early Miocene shortening has not been reported, but cannot be
excluded either: the sedimentary basins in the heart of the Isparta
Angle near Yalvaç (Fig. 2) are middle Miocene and younger
(Yağmurlu, 1991) and pre-middle Miocene compression is possible.
Moreover, Fig. 2 highlights a curved belt of Jurassic limestones in the
eastern limb of the Isparta angle, which suggests a larger amount of
convergence in the north than in the south. The age of this
deformation and curving is unknown, and it is tentatively ascribed
to early Miocene in Fig. 4f.

Finally, the max. 50 km of extension accommodated by the Simav
detachment should be represented in the northeastern Lycian Nappes,
with an increasing amount of NE–SW stretching from the SE to NW,
where they were overlying the Menderes Massif the longest (Fig. 5).
Although the lack of detailed information does not allow more than
speculation on this matter, the map pattern of the Isparta Angle may
be in linewith this suggestion: a triangular ‘gap’ exposing Ören Unit or

Afyon Zone rocks is defined south of the line from the Isparta Angle to
the Simav detachment. The opening of this angle is tentatively
included in the reconstruction of Fig. 4.

5.5. Implications for exhumation mechanisms of metamorphic rocks

The reconstruction above argues that the bulk of exhumation of
the Menderes Massif occurred prior to the activity of Neogene
extensional detachments, and the formation of metamorphic core
complexes of the CMM and along the Simav detachment. In fact, most
of the Massif already resided in the upper crust at the inception of
extensional detachment faulting, and the southeastward sliding of the
Lycian Nappes.

This situation is reminiscent on the unroofing history of HP–LT
rocks on the island of Crete (Fig. 1), where originally, an extensional
detachment was held accountable for ∼100 km of extension and
exhumation from ∼35 km depth or more (Jolivet et al., 1996; Ring
et al., 2001b; van Hinsbergen et al., 2005c), pre-dating 15–13 Ma
indicated by fission track ages (Thomson et al., 1998; Marsellos et al.,
2010). Recently, however, Rahl et al. (2004) argued that the
metamorphic contrast across this detachment may only explain
some 6 km of exhumation, and the age of the Cretan supradetachment
basin of 10.8–10.4 Ma shows that crustal extension commenced well
after the bulk of exhumation occurred (Ring et al., 2001a; van
Hinsbergen and Meulenkamp, 2006; Zachariasse et al., in revision).
Comparable to western Turkey, the preservation of remnants of the
entire nappe stack on Crete precludes a major contribution of erosion
(Rahl et al., 2004; Zachariasse et al., in revision).

The available structural evidence in western Turkey, and the
unlikelihood of a significant contribution of erosion fails to explain the
exhumation of the Menderes Massif to upper crustal levels, and the
analogy to Crete suggests that this is not a unique problem. As pointed
out earlier in this paper, the amount of pre-Miocene exhumation of
the Menderes Massif is a controversial subject, with advocates for
depths equivalent to greenschist facies conditions (Gessner et al.,
2001b, c; Ring et al., 2003; Régnier et al., 2007) or amphibolite-facies
and perhaps even HP–LT conditions (Bozkurt, 2007). Whichever
scenario one prefers, exhumation of the Menderes Massif to only a
few kilometers of depth at the inception of the Miocene cannot be
linked to the known extensional structures today. A solution for this
problem remains open for discussion, but it seems that the available
concepts cannot entirely explain exhumation of metamorphic rocks in
the cases discussed here.

5.6. Geodynamic implications

An important consequence of the restoration in this paper is that
the amount of early Miocene extension in the Aegean back-arc is
much smaller than previously assumed. Only some 50 km or less of
NE–SW extension can be accounted for in the early Miocene, as

Fig. 5. Schematic block-diagram summarizing the early Miocene unroofing scenario proposed in this paper.
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opposed to the previously assumed 150 km or more. This reconstruc-
tion therefore implies a slow rate of back-arc extension in the early
Miocene, and a dramatic acceleration in the middle Miocene,
associated with the curvature of the Aegean orocline (van Hinsbergen
et al., 2005b, 2008). This consequence is in line with the consistently
young fission track ages representing the timing of exhumation in the
Cyclades of central Greece, which are invariably younger than 15 Ma
(Hejl et al., 2002, 2008; Kumerics et al., 2005; Brichau et al., 2006,
2007, 2008, 2010). Testing this prediction will be subject of future
restorations.

Finally, this reconstruction still allows for 50 km of NE–SW
extension, with a sharp boundary east of the Menderes Massif, buried
below the SE-ward slid Lycian Nappes. This boundary may be caused
by roll-back of the Aegean slab, and represent transform fault
accommodating SW-ward roll-back of a slab-edge (Govers and
Wortel, 2005) below the eastern part of the Menderes Massif in
early Miocene times.

6. Conclusions

This paper reviews the tectono-metamorphic history of western
Turkey, and presents the first restoration of this region for the
Neogene, contemporaneous with the exhumation of the major
Menderes metamorphic massif to the surface. While making this
restoration, it became evident that the general consensus on simple
NE–SWunroofing of theMenderesMassif is impossible to reconstruct,
and this paper provides therefore an alternative solution.

Reconstructing western Turkey back to approximately 15 Ma is
relatively straightforward. Since the early middle Miocene, south-
western Turkey, including the Southern Menderes Massif, the Lycian
Nappes and the Bey Dağları platform, underwent a ∼25° counter-
clockwise rotation with respect to northwestern Turkey about a pole
north of Denizli. To the west, this rotation was accommodated by the
Central Menderes metamorphic core complex. To the east, the
rotation must have been accommodated by compressional deforma-
tion in the Lycian Nappes. Previously documented distributed
transpression in the Isparta Angle, and post-Oligocene thrusting in
the Denizli basin are in line with this inference, but further work is
needed to establish the exact accommodation of the predicted
convergence.

The Northern and Southern Menderes Massifs were unroofed in
the course of the early Miocene, and at ∼15 Ma, it formed a
rectangular shaped window, with abrupt and straight boundaries.
Previous work has shown that only 50 km or less of this unroofing
occurred along the top-to-the-northeast Simav detachment between
23 and 15 Ma. This, in combination with preserved (pre-Miocene)
consistently NE–SW stretching lineations across the massif, and syn-
exhumational thrusting of the Lycian Nappes over the Bey Dağları
platform is usually logically interpreted to reflect simple NE–SW
extensional unroofing of the Menderes Massif, associated with
∼150 km of extension.

Such unroofing requires a major strike-slip fault along the eastern
boundary of the Menderes Massif, that would need to cross-cut the
Lycian Nappes. There is no such fault in the latter, and the generally
agreed upon unroofing scenario is impossible to restore.

Instead, I here propose that simultaneously with NE–SW exten-
sional exhumation along the Simav Detachment, over a distance of
50 km or less in the earlyMiocene, the Lycian Nappes slid SE-ward, i.e.
orthogonal to the Simav detachment sense of shear. This sliding
accounted for the final unroofing of the remainder of the Northern
and Southern Menderes Massifs, and was accommodated along a
decollement formed by the Ören unit, an upper Cretaceous HP–LT
metamorphic metasedimentary sequence underlying the Lycian
Nappes. The presence of NE–SW trending, lower Miocene extensional
basins in both the Lycian Nappes and on the Menderes Massif support
this hypothesis.

Two important implications of this reconstruction are that 1) early
Miocene NE–SW extension in the eastern Mediterranean back-arc
was limited to not more than 50 km and 2) exhumation of the
southern, and most of the northern Menderes Massif south of the
exposures of the Simav detachment from depths equivalent to
greenschist-facies or higher-grade conditions cannot be attributed
to the extensional detachment faults that are known today. The
restoration in this paper, in combination with the available age
constraints on the cooling history of the Menderes Massif suggests
that most of it resided at upper crustal levels at the inception of
extensional detachment faulting, a situation reminiscent of the
exhumation history of the island of Crete. A solution for this problem
remains open for discussion.

Finally, the early Miocene extension in the Menderes massif marks
the onset of roll-back of the subducted Aegean slab. The sharp eastern
boundary of roll-back related extension between theMenderesMassif
and the rest of Turkey, now buried below the SE-ward slid Lycian
Nappes, likely represents a transform fault that accommodated the
SW-ward roll-back of the eastern Aegean slab-edge.
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